home   |   -   |   A-Z   |  





DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENT

Fig.1 is a cross-sectional view through the front plane taken along the central axis of a space vehicle provided by the method and device of this invention. A hollow superconductive shield 1 forms a protective outer shell of the space vehicle. The hollow superconductive shield 1 may be shaped as a hollow disk, sphere, or the like 3-dimensional geometrical figure formed by the 2-dimensional rotation of a curve around the central axis.

In the preferred embodiment, the hollow superconductive shield 1 is made of a superconductor such as YBa2Cu33O7-y, or a like high-temperature superconductor with a composite crystal structure cooled to the temperature of about 400K. Those skilled in the art may envision the use of many other low and high temperature superconductors, all within the scope of this invention.

An inner shield 2 is disposed inside the hollow superconductive shield 1. The inner shield 2 is comprised of an upper shell 3 and a lower shell 4, the shells 3 and 4 adjoined with each other. Executed from insulation

materials such as foamed ceramics, the inner shield 2 protects the environment within the shield from the electromagnetic field and severe temperatures.

A support structure 5 is disposed between the hollow superconductive shield 1 and the inner shield 2, concentric to the hollow superconductive shield. The support structure 5 is comprised of an upper rotating element 6 and a lower rotating element 7.

The upper rotating element 6 is pivotably disposed inside the hollow superconductive shield 1 and may envelope the upper shell 3. The lower rotating element 7 is pivotably disposed inside the hollow superconductive shield 1 and may envelope the lower shell 4. Even though the preferred embodiment has two rotating elements, those skilled in the art may envision only one rotating element, or three or more rotation elements, all within the scope of this invention.

Upper means for generating an electromagnetic field 8 are disposed between the hollow superconductive shield 1 and the upper shell 3. The upper means for generating an electromagnetic field 8 are fixed to the upper rotating element 6 at an electromagnetic field-penetrable distance to the hollow superconductive shield 1.

Lower means for generating an electromagnetic field 9 are disposed between the hollow superconductive shield 1 and the lower shell 4. The lower means for generating an electromagnetic field 9 are fixed to the lower rotating element 7 at an electromagnetic field-penetrable distance to the hollow superconductive shield 1.

The upper means for generating an electromagnetic field 8 and the lower means for generating an electromagnetic field 9 could be solenoid coils or electromagnets. In the process of operation of the space vehicle, the electromagnetic field identified by flux lines 10, is controllably and variably applied to the hollow superconductive shield 1.

Electric motors are disposed inside the hollow superconductive shield along its central axis.

A power source 11 is disposed inside the hollow superconductive shield 1 and may be disposed inside the lower shell 4. The power source 11 is electrically connected with the upper means for generating an electromagnetic field 8, the lower means for generating an electromagnetic field 9, and the electric motors. The upper means for generating an electromagnetic field 8, the lower means for generating an electromagnetic field 9, and the electric motors provide for the rotation of the upper rotating element 6 and the lower rotating element 7. The power source 11 may be a nuclear power generator.

Life-support equipment 12 is disposed inside the inner shield 2, and may be disposed inside the lower shell 4. The life-support equipment 12 may include oxygen, water, and food.

A flux modulation controller 13 is disposed inside the inner shield 2, and may be disposed inside the upper shell 3. The flux modulation controller 13 is in communication with the upper means for generating an electromagnetic field 8, the lower means for generating an electromagnetic field 9, the power source 11, and the electric motors.

The flux modulation controller 8 may be executed as a computer or a microprocessor. The flux modulation controller 8 is provided with a capability of modulating the performance parameters of the upper means for generating an electromagnetic field 8, the lower means for generating an electromagnetic field 9, the power source 11, and the electric motors.

A crew 14 may be located inside the upper shell 3 of the inner shield 2 and may consist of one or more astronauts. The crew has a free access to the life-support equipment 12 and the flux modulation controller 8. A person skilled in the art, may envision a fully-automated, pilotless craft, which is also within the scope of this invention.

A person skilled in the art, may also envision the embodiment (not shown), also within the scope of this invention, where the hollow superconductive shield is pivotable, and the support structure with the means for generating an electromagnetic field is affixed on the outside of the inner shield.

Fig.2A and Fig.2B are diagrams showing the results of the quantised electromagnetic turbulence within the superconductive shell of the hollow superconductive shield provided by the relative rotational motion of the hollow superconductive shield against the upper means for generating an electromagnetic field.

Fig.2A shows the clockwise relative rotational motion of the hollow superconductive shield, this motion identified by a clockwise shield motion vector 15, and the counter-clockwise relative rotational motion of upper means for generating an electromagnetic field, this motion identified by a counter-clockwise EMF motion vector 16.

The electromagnetic field, controllably and variably applied by the upper means for generating an electromagnetic field, whose various positions are identified by a wire grid 17, to the hollow superconductive shield (not shown), causes quantised electromagnetic turbulence within the hollow superconductive shield. This turbulence is represented by a plurality of clockwise quantised vortices of lattice ions 18. Only one line of the clockwise quantised vortices of lattice ions 18, (not to scale), is shown for illustration purposes only. Each of the clockwise quantised vortices of lattice ions 18 generates a gravitomagnetic field identified by an outward gravitomagnetic field vector 19 directed orthogonally away from the hollow superconductive shield.

Fig.2B shows the counter-clockwise relative rotational motion of the hollow superconductive shield, this motion identified by a counter-clockwise shield motion vector 20, and the clockwise relative rotational motion of upper means for generating an electromagnetic field, this motion identified by a clockwise EMF motion vector 21 .

The electromagnetic field, controllably and variably applied by the upper means for generating an electromagnetic field identified by the wire grid 17, to the hollow superconductive shield (not shown), causes quantised electromagnetic turbulence within the hollow superconductive shield, this turbulence represented by a plurality of counter-clockwise quantised vortices of lattice ions 22. Only one line of the counterclockwise quantised vortices of lattice ions 22, (not to scale), is shown for illustration purposes only. Each of the counter-clockwise quantised vortices of lattice ions 22 generates a gravitomagnetic field identified by an inward gravitomagnetic field vector 23 directed orthogonally toward the hollow superconductive shield.

The electrical requirements for providing the Li-Torr effect are as follows:

Podkletnov has reported using the high frequency current of 105 Hz. He also used 6 solenoid coils @ 850 Gauss each. The reported system's efficiency reached 100% and the total field in the Podkletnov's disk was about 0.5 Tesla. The maximum weight loss reported by Podkletnov was 2.1%.

The preferred embodiment of the device of current invention is capable of housing 2-3 astronauts and therefore is envisioned to be about 5 meters in diameter at the widest point. The preferred space vehicle's acceleration is set at 9.8 m/s/s providing that gravity on board is similar to that on the surface of Earth.

The means for generating an electromagnetic field may be comprised of 124 solenoid coils. At the same 100% efficiency reported by Podkletnov, the total field required providing the acceleration of 9.8 m/s/s is 5,000 Tesla, or about 40 Tesla per coil. Skeggs suggests that on the Podkletnov device, out of 850 Gauss developed on the coil surface, the field affecting the superconductor and causing the gravitomagnetism is only 400 Gauss ("Engineering Analysis of the Podkletnov Gravity Shielding Experiment, Peter L. Skeggs, Quantum Forum, Nov. 7, 1997, http://www.inetarena.com/~noetic/pls/podlev.html, 7 pages). This translates into 47% device efficiency.

In this 47%-efficient space vehicle, the total field required achieving the 9.8 m/s/s acceleration is about 10,600 Tesla, or 85.5 Tesla per each of 124 solenoid coils. It must be noted that at this acceleration rate, it would take nearly a year for the space vehicle to reach the speed of light.

It also must be noted that Skeggs has detected a discrepancy between the Li-Torr estimates and Podkletnov's practical results. If Podkletnov's experimental results are erroneous while the Li-Torr estimates are indeed applicable to the space vehicle of this invention, then the energy requirements for achieving the sought speed would be substantially higher than the above estimate of 10,600 Tesla.

Podkletnov has concluded that, in order for the vacuum pressure density anomaly to take place, the Earth-bound device must be in the condition of Meissner levitation. As are all space bodies, the space vehicle is a subject to the pressure inflationary vacuum state and the gravitational force, which, within the migrating locality of the expanding Universe, in any single linear direction, are substantially in equilibrium. Thus, for the space vehicle, the requirement of Meissner levitation is waved.

The propagation of the gravitomagnetic field identified by the outward gravitomagnetic field vector 19 and the inward gravitomagnetic field vector 23 would cause exotic quantised processes in the vacuum's subatomic particles that include particle polarisation, ZPF field defects, and the matter-energy transformation per E=mc1. The combination of these processes would result in the gravitational anomaly. According to the general relativity theory, gravitational attraction is explained as the result of the curvature of space-time being proportional to the gravitational constant. Thus, the change in the gravitational attraction of the vacuum's subatomic particles would cause a local anomaly in the curvature of the Einsteinean space-time.

Gravity is the same thing as bent space, propagating with the speed of light characteristic for the particular space-time curvature. When bent space is affected, there is a change in the speed of propagation of gravity within the space-time curvature anomaly. The local speed of light, according to Fomalont and Kopeikin always equal to the local speed of propagation of gravity, is also affected within the locality of space-time curvature anomaly.

Creation of space-time curvature anomalies adjacent to, or around, the space vehicle, these anomalies characterised by the local gravity and light-speed change, has been the main object of this invention.

Fig.3A shows a diagram of a vacuum pressure density anomaly associated with lowered pressure of inflationary vacuum state 24 on the background of Universal curvature of inflationary vacuum state 25. The vacuum pressure density anomaly associated with lowered pressure of inflationary vacuum state 24 is formed by a multitude of the inward gravitomagnetic field vectors. According to the cosmological constant equation,

A Practical Guide to Free Energy Devices

where:

The cosmological constant Lambda, is proportional to the vacuum energy pressure rho-lambda, G is Newton's constant of gravitation, and c is the speed of light, so the curvature of space-time is proportional to the gravitational constant. According to the general relativity theory, the change in the vacuum pressure density is proportional to the change in the space-time curvature anomaly. By replacing rho-lambda with the vacuum pressure density, P times the vacuum energy coefficient kappa, and replacing c with: delta-distance/delta-time, we derive to the equation:


BRIEF DESCRIPTION OF THE DRAWINGS | A Practical Guide to Free Energy Devices | c



Loading...